首页> 外文OA文献 >Improving a multi-objective evolutionary algorithm to discover quantitative association rules
【2h】

Improving a multi-objective evolutionary algorithm to discover quantitative association rules

机译:改进多目标进化算法以发现定量关联规则

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This work aims at correcting flaws existing in multi-objective evolutionaryschemes to discover quantitative association rules, specifically those based on the wellknownnon-dominated sorting genetic algorithm-II (NSGA-II). In particular, amethodology is proposed to find the most suitable configurations based on the set ofobjectives to optimize and distance measures to rank the non-dominated solutions. First,several quality measures are analyzed to select the best set of them to be optimized.Furthermore, different strate-gies are applied to replace the crowding distance used byNSGA-II to sort the solutions for each Pareto-front since such distance is not suitable forhandling many-objective problems. The proposed enhancements have been integrated intothe multi-objective algorithm called MOQAR. Several experiments have been carried outto assess the algorithm’s performance by using different configuration settings, and the bestones have been compared to other existing algorithms. The results obtained show aremarkable performance of MOQAR in terms of quality measures.
机译:这项工作旨在纠正多目标进化方案中存在的缺陷,以发现定量关联规则,特别是那些基于众所周知的非支配排序遗传算法-II(NSGA-II)的规则。尤其是,提出了一种方法论,以基于优化的目标集和距离度量来对最主要的解决方案进行排名,以找到最合适的配置。首先,分析几种质量措施以选择最佳方案进行优化。此外,由于这种距离不合适,因此采用了不同的策略来替代NSGA-II所使用的拥挤距离来对每个帕累托峰的解决方案进行排序处理多目标问题。所提出的增强功能已集成到称为MOQAR的多目标算法中。通过使用不同的配置设置,已经进行了几次实验来评估算法的性能,并且将bestone与其他现有算法进行了比较。所获得的结果表明,MOQAR在质量指标方面表现出色。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号